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1. INTRODUCTION 
  
Intense, high-energy electromagnetic emissions and expulsion of charged particles are known to 
be products of solar flare events. As these events pose a potential threat to satellite navigation 
and communication systems, manned space operations and high altitude aviation, there is 
considerable interest in determining whether or not significant solar flares can be anticipated to 
protect valuable assets. Because of the complex physical nature of solar disturbances and 
mankind’s current inability to comprehensively simulate them, most flare prediction efforts to 
date have had an observational basis. Norquist [1] briefly reviewed past attempts to use statistical 
methods to predict the probability of flaring in specific active regions, and summarized them in 
two groups: those that infer flaring probability from the observed flaring rates in historical 
catalogs of classified active regions, and those that use current solar observations of the solar 
magnetic field to deduce properties likely to be associated with flaring to predict flaring 
probability. A recent example of the former is the work of Contarino et al. [2], in which sunspot 
group characteristics historically associated with flaring were assessed to evaluate the probability 
of flaring. Two encouraging examples of the latter type of statistical flare probability algorithm 
were recently published by Falconer et al. [3] and Reinard [4], who used observations of free 
magnetic energy and helioseismological oscillations, respectively, to predict the probability of 
near-term flare occurrence 
. 
In the current study, we investigate the utility of optical observations of the solar chromosphere 
in the diagnosis of flare probability. With flare probability prognoses as the ultimate goal, we 
first determine the feasibility of correctly inferring flaring likelihood at the observation time. If 
feasible, we would next investigate if there is sufficient information in the image sequence to 
project the flare probability estimate ahead in time. Sequences of hydrogen-alpha (Hα) images at 
one-minute intervals from the U. S. Air Force Improved Solar Observing Optical Network 
(ISOON) telescope at Sacramento Peak, NM (Neidig et al. [5]) were used as the basis for flare 
probability estimation. We used picture element (pixel) values of Hα intensity at one arc second 
grid spacing for selected sub-regions of solar active regions for the image sequence of 8-10 hours 
duration (the observable daylight hours) as the optical data for this study. Hα image sequences 
were subjected to principal component analysis (PCA) to derive the eigenvectors and associated 
eigenvalues. At each image time, the sub-region average Hα intensity and the independently 
obtained whole disk 1-8 Å x-ray flux from the Geostationary Operational Environmental 
Satellite (GOES) were used to determine a category of degree of flaring. A subset of the leading 
eigenvector elements at each time served as the predictors, and the flaring category the 
predictand, in employing multivariate discriminant analysis (MVDA) on several image 
sequences making up a “training set.” The consequent discriminant vectors were then applied to 
the eigenvector element subsets of both the training set sequences and other independent 
sequences to determine the probability of each flaring category at the observation time. These 
were compared with the specified flaring category at each time to determine the skill of the 
flaring category probability diagnosis. 
 
Norquist [1] found that flares were produced from a relatively small proportion (about seven 
percent) of sunspot group-days over Solar Cycle 23. Because the “non-flaring” category was so 
likely to be the correct one, it seemed most effective to carry out a two-phased approach to 
diagnosing flare probability: diagnose the binary yes/no category flaring probability, then for the 
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“yes” times, attempt to diagnose the intensity of flaring. Thus, a discriminant analysis for two 
groups was implemented on the PCA eigenvectors as predictors and yes/no flaring specification 
predictand categories based on a minimum five percent rise in area-average Hα and 
corresponding x-ray flux of ≥ 1.0 x 10-6 W m-2. We found that much of the time, the discriminant 
function was unable to correctly distinguish between flaring and non-flaring in the subsequent 
diagnosis. We concluded that using an arbitrary threshold to separate flaring from non-flaring 
compromised the ability of the discriminant analysis to distinguish between the two categories. 
 
We next attempted an application of MVDA for multiple groups in which we derived a empirical 
relationship between (1) the ratio of Hα area mean intensity to a background (bkgd) full-disk 
mean intensity from the previous day and (2) the ratio of the x-ray intensity to a “threshold” level 
(the next full power of 10 above its prior-day background value) to set the predictand categories. 
We used four categories: non-flaring (corresponding to x-ray flux below the threshold), weak 
flaring (within a power of 10 of the x-ray threshold), moderate flaring (between 10 and 100 times 
the threshold), and strong flaring (at or above 100 times the x-ray threshold). Using the derived 
relationship, we set the category boundaries in Hα/Hα(bkgd) and used them to determine the 
category to which each image time would be assigned based on its Hα/Hα(bkgd). After 
implementing the four-group MVDA, the consequent discriminant vectors were applied to the 
eigenvector elements at each image time for both training set and independent cases. We found a 
tendency for the diagnosis to be biased positive – that is, the most probable category determined 
by the algorithm was on average greater than the specified category. This result parallels those 
found by other investigators (e.g., Reinard [4]) in which an excessive number of false alarms are 
predicted. 
 
The last attempt documented in this report involved using the characteristics of the temporal 
variation of the leading eigenvectors for each image sequence as the principal indicator for 
flaring category classification. We noticed that the time series of the primary eigenvectors 
appeared to be very similar in their pattern for ISOON sequences of like degrees of flaring. This 
varied from very smoothly varying sinusoidal shapes for non-flaring sequences to nearly 
constant magnitude followed by a sharp drop then quick rise above the prior level of constant 
magnitude at the time of flare onset in strongly flaring sequences. We used a combination of the 
eigenvector pattern characteristics and the x-ray flare intensity to set the category of each flare 
apparent in the area-average Hα time series. In every case, non-zero flaring categories were 
assigned only during the times of the flare rise – at all other times, including flare demise, zero 
(non-flaring) was assigned. Once this four-category scheme was analyzed by MVDA, the 
application of the resulting discriminant functions to the ISOON sequence eigenvectors revealed 
a significantly improved ability to discriminate among flaring categories. Also compared to the 
Hα/Hα(bkgd) magnitude approach to assigning predictand categories, the eigenvector pattern 
method measurably reduced the positive bias of the diagnosed flaring category. 
 
The organization of this report is as follows. Section 2 describes the data used in the study in 
more detail. Section 3 explains the methods used in the various attempts to develop and apply the 
discriminant vectors to the ISOON image sequence eigenvectors. Section 4 presents the results 
of comparing the diagnosed flaring category probabilities with the specified category for all 
image sequences. Section 5 concludes the article with a summary of the study and some 
expectations for extending the work to include prognostication of flaring probability. 
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2. DATA 
 
The observational data used in this study to develop and apply the statistical method for 
diagnosing flare occurrence was the hydrogen-alpha (Hα) images at one-minute intervals from 
the ISOON telescope. Our archive of images extends back to late 2002 when the ISOON 
telescope began taking observations, primarily on weekdays.  Each image is a grid of picture 
elements (pixels) with a spacing of 1.1 arc second covering the entire solar disk visible from 
Earth. Every image is gain corrected by the telescope software. Solar active regions (sunspot 
groups) of interest were identified from selected dates available in the ISOON data archive. The 
selection included dates during which flares did and did not occur at any time during each day’s 
available solar viewing time period. Hα intensity was extracted at each image time from a sub-
region of pixels for the entire observational time period of each date, varying in duration from 
4½ to 10 hours. After extraction, the images were normalized, spatially oriented and aligned. In 
all, sub-region image sets were prepared for 44 sunspot group-dates for this study, extending 
from 13 December 2002 to 6 December 2006. For one of the sunspot group-days, we extracted 
Hα intensity for three separate sub-regions in a single active region, resulting in a total of 46 
ISOON Hα image sequences considered in the study. 

 
Due to environmental seeing condition limitations and occasional ISOON operation issues, short 
data gaps (usually less than one hour in duration) sometimes occurred in the time series for a 
particular date. In this study, we ignored the data gaps and used the data whenever available. 
Timestamps of the image measurements were used only to extract x-ray flux data at the same 
times, and to plot each observed time series and resulting products in clock time for display 
purposes. 
 
X-ray flux measurements in the 1-8 Å wavelength range from the soft x-ray sensor aboard the 
GOES satellite operational during the range of dates of extracted Hα data were acquired from the 
National Geophysical Data Center (NGDC) at one-minute intervals (see 
http://goes.ngdc.noaa.gov/data/avg). The x-ray data were extracted from the NGDC archive for 
each entire date of interest, and for the entire prior day as well. We used the ISOON timestamps 
of available one-minute interval Hα data to extract x-ray flux at the same times. This resulted in 
an exact match of Hα intensity and x-ray flux one-minute interval values for each of the 46 
sunspot group-date image sequences. The prior-day x-ray flux record was used to derive a 
background x-ray flux level that was used to establish a non-flaring/flaring threshold as 
described in the next section. 
 
Lastly, full-disk mean intensity (FDMI) Hα time series for the available observing times of the 
day prior (when available) to each date of interest were prepared from the respective Hα image 
sequence in the ISOON data archives. As in the case of the prior-day x-ray flux data, we used 
these FDMI values to establish a background level of Hα intensity with which to judge the 
degree of flaring as detailed in the following section. 
 
3. METHODS 
 
The method of principal component analysis (PCA, e.g., see Wilks [6]) was applied to each of 
the 46 ISOON Hα intensity image sequences. The goal was to use PCA to analyze 
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spatial/temporal characteristics of the images, endeavoring to associate them with the presence or 
absence of flares during the sequence time period. Given the K ISOON pixel values of Hα 
intensity in each of n image times, we formed an n row by K column matrix of Hα values. 
Though the pixel values are oriented in a rectangular grid in the image, we simply strung the grid 
rows together to form a K-dimensional vector constituting each of the rows of the n × K matrix. 
Reversing the usual convention of treating the multiple observations at each measurement time 
as the “variables”, we cast the image times as the variables in the PCA and computed the n × n 
covariance matrix [S] made up of the elements sk,l defined by: 
 

                                    ; k, l = 1, n    [1] 
 
where the x are the Hα pixel values from the n × K matrix of image values,  k and l are indices of 
the various combinations of image times, and the overbars represent the spatial average over the 
pixels for a particular image time. Then the n eigenvalues λ and n-dimensional orthonormal 
eigenvectors e were derived from the equation [S] e = λ e for each ISOON image sequence. The 
eigenvalues are ranked in decreasing order of influence in characterizing the image sequence. 
They are shown for the ISOON image sequence of 11 June 2003, active region 10375, in Figure 
1. There are n eigenvalues m = 0, n-1 in which the few leading (most influential) eigenvalues are 
several orders of magnitude greater than the lesser ones nearer the end. Figure 2 shows the nine 
leading eigenvectors for this same case, numbered zero to eight. Note the observation times on 
the abscissa indicating the duration of the image sequence of the plotted eigenvectors. Note also 
the gaps are included in the eigenvector plots indicating the times of unavailable ISOON images. 
 
As previously stated, the eigenvectors represent the spatial/temporal variations of the Hα images 
during the course of the ISOON observations. We wish to associate them with the level of flare 
activity, if any, during the observation period. As such, they serve as “predictors” against which 
a corresponding “predictand” (in this case, a level of flaring intensity) is assigned. At each 
observation time, a vector having as its elements the leading eigenvectors (the predictor vector) 
is associated with an assigned predictand. Once the predictor vector-predictand pair is 
established for each observation time, they are submitted to a statistical algorithm, such as a 
regression scheme, to derive the coefficients of relationship(s) for the predictand as a function of 
the linear combination of eigenvector elements (predictor vector). If the predictands are 
categorical instead of continuous as in this study, there is always one fewer linear predictand – 
predictor function than number of categories. 
 
The statistical method used in this project to relate predictands with predictor vectors, and thus to 
establish functional relationships between them with which diagnose flaring probability, is 
discriminant analysis. When using this technique, the derived coefficients of the predictand – 
predictor relationships are called discriminant vectors, and their dot product with the predictor 
vectors are called discriminant functions. This technique is most effective in distinguishing 
among the designated predictand categories when the category, or group, mean predictor vectors 
projected in discriminant space (that is, when dotted with each discriminant vector) have the 
greatest separation distance among them. In addition, if the scatter of the projection of the 
individual predictor vectors is small and there is little overlap in discriminant space between the  
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Figure 1. ISOON Hα Image Sequence Eigenvalues for 11 June 2003, Active Region 10375 
 

 
 

Figure 2. First Nine Eigenvectors of the 11 June 2003 ISOON Hα Image Sequence 
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groups, this also improves the category distinction. When the discriminant vectors are applied to 
the leading eigenvector elements (predictor vectors) at each observation time from independent 
measurement cases, the group mean lying closest in discriminant space is indicative of the most 
likely category to which the observation should be assigned. In fact, the relative distances to the 
group means can be used to estimate the probabilities of each category being the correct one for 
a diagnosed observing time. So it can be seen that, if the group means are close together and/or if 
there is considerable overlap among the discriminant space domains of the groups, there will be 
considerable ambiguity in the category assignment of the independent observation. In this case, 
the categorical probabilities will be more similar in magnitude, without a clearly dominant one 
that would designate the most probable correct category. 
 
As previously stated, the leading eigenvectors derived from the PCA of each ISOON Hα image 
sequence served as the elements of the predictor vectors at each observation time. Solution of the 
eigenvalue-eigenvector equation results in n eigenvalues and eigenvectors, the latter each having 
n elements. Because it is unwieldy to carry all eigenvectors into the discriminant analysis, it is 
necessary to truncate the number of eigenvectors used while ensuring that all of the essential 
information is retained. To do this, we took advantage of the fact that the eigenvalue magnitudes 
signify the influence of the eigenvectors in characterizing the Hα variations. As shown in Figure 
1, their magnitudes quickly declined with increasing eigenvalue number, so we computed the 
sum of their magnitudes over all n eigenvalues, and then computed the cumulative percentage 
contribution to the total sum for each successive eigenvalue. We truncated the eigenvectors at the 
eigenvalue number where this contribution reached 99.9% of the total eigenvalue magnitude. In 
this way, we can ensure that virtually all of the explained variance is captured in the truncated set 
of eigenvectors. For the 46 individual cases investigated in this study, the number of included 
(leading) eigenvectors varied from 28 to 52 extracted from an average n = 450. When a “training 
set” of several image sequences were used collectively to develop the discriminant functions, the 
largest number of eigenvalues required to reach the 99.9% threshold among the individual 
sequences was the truncation level used for them all. 
 
Having specified the predictor vectors for the discriminant analysis, it remains to designate the 
criteria for assigning each observation to a category in order to develop the discriminant vectors. 
Generally, with discriminant analysis it is beneficial to keep the number of categories to a 
minimum in order to maximize their distinction. In the case of solar flares as the phenomena of 
interest, Norquist [1] found that in the vast majority (approximately 93%) of sunspot group-days 
of Solar Cycle 23, no significant flares (x-ray class C5 or greater) occurred. This suggests that 
non-flaring is a very likely flaring category, and all levels of actual flaring are contained in the 
other seven percent of the cases. Therefore, our initial effort to establish predictand categories for 
flaring probability diagnosis was to use a binary, non-flaring/flaring approach. While we 
acknowledge that our limited 46 sunspot group-day data set is not representative of the solar 
cycle as a whole, in any given multi-hour observation period it is usually the significant minority 
of times during which flaring is actually occurring, if at all. 
 
To assign individual observing times to either no-flare or flare categories, we used the time series 
of both the sub-region area average Hα intensity and the x-ray flux. The former is specific to just 
the extracted sub-region, which is our area of interest for flare diagnosis, while the latter is a 
measure of the full disk emission in the 1-8 Å wavelength range. Therefore, Hα intensity must be 
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the primary basis for establishing the predictand category pertinent to the sub-region of interest. 
However, no flaring can be declared for any sub-region unless it is apparent in the x-ray 
observations at the same time. For the Hα basis, we employed a simple algorithm that set a no 
flare/flare flag at each measurement time based on the following criterion: the (five-point) 
smoothed area-average Hα intensity time series for a given sub-region rises continually 
(allowing for brief decreases of < 10% of the rise to that point) by at least 5% more than the 
value at the start of the rise (the “base” value) and maintains a value greater than the base value. 
The entire period of the rise was considered flaring. Then the x-ray flux for any designated 
flaring times was checked to see if was ≥ 1 x 10-6 Wm-2. If not, the flag was changed to non-
flaring. 
  
We used the Fisher’s Linear Discriminant for two groups (FLDF2G) algorithm (Wilks [6]) to 
develop the discriminant vector from the predictor vectors and designated predictand category at 
each observation time in a multiple-sequence training set. A summary of the algorithm is 
presented in Appendix A. We then tested the discriminant vector by applying it to the predictor 
vectors for just the training set sequences. At each diagnosis time, we assigned the binary 
category whose group mean lie closest to the resulting location on the line connecting the 
projections of the two group means (of the training eigenvector elements). The relative distance 
to either group mean also provided an estimate of the probability of either of the two groups 
being the correct one (see Appendix A). If the diagnosed discriminant space location lie beyond 
either of the group mean locations (a probability of the respective category > 1), then the 
category probability was set to 1. The resulting diagnosed categories and their probabilities were 
evaluated against the category specified in the predictands used as input to the FLDF2G 
algorithm. 
  
In applying the two-category technique to the development data from which the discriminant 
vector was derived, we found that an excessive number of measurement times had a flaring 
diagnosis. The FLDF2G algorithm was unable to distinguish between flaring and non-flaring 
very well. The overall performance was poor for the sequences tested. In evaluating the reasons 
for the poor performance of using the dual x-ray and Hα no flare/flare criteria for setting the 
binary predictand, we considered as an example the sequence dated 9 May 2003 extracted from 
an active region of unknown number. Time series of the sub-region area-averaged Hα intensity 
and whole disk x-ray flux for the sequence are shown in Figures 3 and 4 respectively. In the Hα 
intensity plot, the original values are normalized by dividing each one by 600, then the resulting 
one-minute normalized values are plotted as the dotted line. The solid line represents the five-
point smoothed values. In comparing the smoothed Hα and observed x-ray flux time series, it is 
clear that both begin to rise at about 15 UTC and hit a peak shortly after 16 UTC, then irregularly 
taper down until around 20 UTC, when they both begin to rise again. Yet because of the Hα (≥ 
5% rise) and x-ray (≥ 1 x 10-6 Wm-2) flare criteria, the entire period is designated as non-flaring 
in the predictand category inputs to the FLDF2G algorithm. This discrepancy between the 
temporal pattern of Hα (characterized by the eigenvectors used as predictors) corroborated by the 
x-ray temporal variation on one hand, and declaring that no flaring is occurring on the other 
hand, is apparently confusing the FLDF2G algorithm and consequently obscuring the distinction 
between non-flaring and flaring in the outcome. This seems to be confirmed when evaluating the 
time series of the leading Hα eigenvectors for this case, shown in Figure 5. Several of the leading 
eigenvectors have clear inflection points in the period 15-17 UTC, seemingly associated with the  
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Figure 3. Hα Intensity for 9 May 2003 ISOON Image Sequence, Unknown Active Region 
 

 
 

Figure 4. GOES 1-8 Å X-Ray Flux for the One-Minute Image Times Shown in Figure 3 
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Figure 5. First Nine Eigenvectors of the 9 May 2003 ISOON Hα Image Sequence 
 
Hα rise during this time. These leading eigenvectors are primary predictors for the binary no-
flare/flare predictands. It is only their relationship to Hα rises that will allow discrimination 
between flaring and non-flaring. 

 
The use of two groups (binary predictand) necessitates the use of thresholds to assign the data to 
the groups. For example, if Hα rise percentage is used as the basis for group assignment, how 
much of a rise constitutes flaring? If one sees significant rises but they are not considered great 
enough for flaring, this rising might be reflected in the eigenvector predictors, and thus a non-
flaring declaration could “confuse” the predictors and reduce their ability to discriminate flaring 
and non-flaring. To preserve this ability, it seems that there must be consistency between trends 
in the predictors and predictands. A way to insure that such trends are preserved is to consider 
the “degree” or relative magnitude of the data upon which the predictand is based. Thus, for 
small relative Hα rises (in which Hα remains less than some baseline value) a category of non-
flaring is assigned. But for gradually increasing Hα intensities, categories of flaring may be 
assigned that reflect the degree of flaring. Since space weather operations uses “classes” of flare 
intensity as the standard, maybe degrees of x-ray flux increase from a baseline value could serve 
as a way to determine the demarcation among corresponding Hα departures from a background 
value. However, it is only fair to try to associate Hα and x-ray changes in sequences where there 
is clearly a match between the rises and falls of Hα and x-ray magnitude in the coincident time 
series. 
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With this reasoning in mind, we wrote an alternative predictand category assignment algorithm 
to distinguish flaring level among four groups: non-flaring, weak flaring, moderate flaring, and 
severe flaring. However, instead of using pre-selected magnitude thresholds for these categories, 
the ratio of Hα intensity and x-ray flux to their respective “background” values was used as the 
measure of the degree of flaring. First, the algorithm computes the background values for each 
ISOON sequence using the NOAA SWPC “X-ray Bkgd Flux” algorithm (see 
http://www.swpc.noaa.gov/wwire.html) applied to the x-ray flux measurements at one-minute 
intervals on the day prior to the date of the ISOON Hα sequence to be analyzed. This is also 
done for the ISOON image sequence Hα intensity values for the prior day. In this case, we used 
the “full disk mean intensity” (FDMI) of Hα at the available one-minute observation times of the 
prior day to compute background Hα, or Hα(bkgd) using an algorithm similar to the SWPC 
algorithm. In cases when prior day FDMI values were not available, we used the current day 
FDMI values to compute Hα(bkgd). Then for the ISOON sequence for the analysis date, the 
correlation between the five-point smoothed, one-minute interval, area-averaged Hα intensity 
divided by Hα(bkgd) and the reported one-minute interval x-ray flux divided by x-ray(bkgd) was 
computed. A total of seven of the 46 sequences were found to have correlations > 0.7. These 
sequences were deemed to have a sufficient match of Hα intensity and x-ray flux rises and falls 
in their time series to be used to establish a relationship between Hα and x-ray flaring degree 
categories. 
 
For these Hα and x-ray sequences, the five-minute averages of the five-point smoothed, 
normalized Hα intensity, divided by its sequence background value, called [Hα]/Hα(bkgd), and 
the five-minute averages of the reported x-ray flux, divided by its sequence threshold value 
(where the threshold value is the next whole power of 10 higher than the x-ray background 
value), called [Xr]/Xr(thrs), were computed. The reason that a threshold value was used is so that 
multiples of ten-fold increase over the threshold would correspond to the standard x-ray classes. 
Table 1 shows the x-ray flare class category table for [Xr]/Xr(thrs). Values shown for “Lower 
Bound” And “X-Ray Threshold” are in W m-2. We establish flaring categories for [Xr]/Xr(thrs), 
as follows: category 0 (non-flaring), [Xr]/Xr(thrs) < 1; category 1, 1 ≤ [Xr]/Xr(thrs) < 10; 
category 2, 10 ≤ [Xr]/Xr(thrs) < 100; category 3, [Xr]/Xr(thrs) ≥ 100. 
 

Table 1. X-Ray Flare Class Category Table for [Xr]/Xr(Thrs) 
 

                   X-ray Threshold 
X-ray Flare Class Lower Bound 1.0e-07 1.0e-06 1.0e-05 

B 1.0e-07 1 - - 
C 1.0e-06 10 1 - 
M 1.0e-05 100 10 1 
X 1.0e-04 1000 100 10 

 
To find the corresponding category boundaries for Hα, we computed the best fit linear 
relationship [Hα]/Hα(bkgd)=A + B log {[Xr]/Xr(thrs)} from the five-minute average 
[Hα]/Hα(bkgd), [Xr]/Xr(thrs) pairs from the seven highly correlated sequences. The scatter plot 
and best fit line are shown in Figure 6. The overall correlation was 0.58, with A = 1.03057 and B 
= 0.10903. Using this linear relationship between [Hα]/Hα(bkgd) and log [Xr]/Xr(thrs), Table 2 
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shows the [Hα]/Hα(bkgd) boundaries for the four flaring categories corresponding to Table 1 for 
[Xr]/Xr(thrs). 
 

 
 

Figure 6. Hα/Hα(Bkgd) vs. log {[Xr]/Xr(thrs)} for Seven Sequences of Correlation > 0.7 
 
 

Table 2. X-Ray Flare Class Category Table for [Hα]/Hα(Bkgd) 
 

        X-ray Threshold 
X-ray Flare Class Lower Bound 1.0e-07 1.0e-06 1.0e-05 

B 1.0e-07 1.03057 - - 
C 1.0e-06 1.13960 1.03057 - 
M 1.0e-05 1.24863 1.13960 1.03057 
X 1.0e-04 1.35766 1.24863 1.13960 

 
Using these values as boundaries for the four flaring categories, we set the following to designate 
the corresponding categories of Hα flaring: category 0 (non-flaring), [Hα]/Hα(bkgd) < 1.03057; 
flare category 1, 1.03057 ≤ [Hα]/Hα(bkgd) < 1.13960; flare category 2, 1.13960 ≤ 
[Hα]/Hα(bkgd) < 1.24863; flare category 3, [Hα]/Hα(bkgd) ≥ 1.24863. In other words, to be 
considered flaring in Hα, the area-averaged intensity value must be about 3% above the previous 
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day’s background value. Which flaring category is assigned is determined by how high above the 
background the area-averaged Hα intensity is: between 3 and 14% greater is category 1, between 
14 and 25% greater is category 2, and more than 25% greater is category 3. In recognition of the 
uniqueness of only Hα, and not necessarily x-ray, as the indicator of flaring in an active region 
subregion of interest, we use only Hα/Hα(bkgd) as the determiner of the categorical predictand 
values 0, 1, 2, 3 in the algorithm. 
 
As in the previous discussion on assigning the binary predictand categories, it is necessary to 
insure that Hα flaring in a specific sub-region is corroborated by the simultaneous evidence of x-
ray flaring on the solar disk. Without the x-ray flare signal there can be no assignment of an 
associated flare from the active region sub-region in question. Therefore, in determining the 
flaring category predictands from the training data, the algorithm examined both the Hα and the 
x-ray time series from the period of interest to confirm any suggestion of flaring. Only at times 
when x-ray flux exceeded the threshold flux was the predictand allowed to be set to flaring 
(categories 1-3) as so indicated by the Hα intensity. 
 
We used the Fisher’s Linear Discrimant for multiple groups (FLDFMG) algorithm (Wilks [6]) 
for implementing multivariate discriminant analysis (MVDA) on the predictor vectors and 
associated four-category predictands. The algorithm is summarized in Appendix B. For four 
groups, three discriminant vectors are derived.  For each group g, the sum of the squares of their 
dot products with each diagnostic time’s independent predictor vector (“observation vector”) 
minus the group mean of the training predictor vectors yields the squared distance (Dg

2, in 
discriminant space) between the observation vector and the group mean. The group with the 
smallest Dg

2 is assigned as the most likely flaring category. As described in Appendix B, the four 
Dg

2 values also can be used to compute the probability pg that each category is the correct one. 
 
Once a most likely category is diagnosed, it can be converted to an equivalent x-ray flaring class 
using the conversion table shown in Table 3. This is essentially an inversion of Table 1, where 
now the diagnosed flaring category is translated into the corresponding x-ray flare class using the 
x-ray threshold appropriate for the date in which the diagnosis is conducted. Thus, for a given 
diagnosis date, the four flaring categories correspond to no flaring and three x-ray classes from 
B- through X-class, depending on the x-ray threshold for the date. The category diagnosis 
performance using this approach to assigning flaring categorical predictands, which we will refer 
to as Hα Magnitude Flare Categorization (HMFC), was evaluated against the specified 
predictand category values using the same technique. The results are discussed in the next 
section. 
 

Table 3. Conversion Table from Flaring Categories to X-Ray Flare Class 
 

       X-ray Threshold 
Flaring Category 1.0e-07 1.0e-06 1.0e-05 

0 No Flare No Flare No Flare 
1 B C M 
2 C M X 
3 M X X 
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Another approach to assigning flaring predictand categories based on ISOON Hα intensity image 
sequences is termed the Hα Eigenvector Flare Categorization (HEFC). This technique was based 
on a study of the temporal characteristics of the leading Hα eigenvectors of the 46 sequences. We 
noticed a similarity in the temporal pattern of the leading eigenvectors among sequences 
depicting like levels of flaring. We found that the patterns of the leading eigenvectors seem to 
fall into four groups as shown by the examples of each type in Figure 7. Qualitatively, we 
describe the temporal variations of the four flaring level indicators (FLIs) as: FLI = 0 for no flare 
above x-ray background and smoothly varying (sinusoidal) eigenvectors, e.g., Figure 7(a); FLI = 
1 for weak flares (in the x-ray decade of the background value) with spiked otherwise smoothly 
varying (sinusoidal) eigenvectors, e.g., Figure 7(b); FLI = 2 for moderate x-ray flares and 
smoothly curved (non-sinusoidal) eigenvectors before and after the flare spike, e.g., Figure 7(c); 
FLI = 3 for strong x-ray flares with non-curving eigenvectors before and smoothly curving after 
sharp spikes, e.g., Figure 7(d). In FLI = 1-3, the spike occurs at the same time as the sharp rise in 
the area-average smoothed Hα intensity. We predetermined the FLI for each ISOON sequence 
based on a subjective assessment of its eigenvector patterns and the associated x-ray flux peak 
value. If there was more than one qualifying flare in a sequence, each flare got its own FLI. The 
FLI and the bounding hours of the flare rise were input into the MVDA development algorithm 
for each pre-identified flare. In setting the categorical predictand at each observation time in each 
of the sequences, the algorithm identifies the maximum rise in Hα intensity and x-ray flux 
between the bounding hours. At each time during the Hα rise, the predictand is set to the 
predetermined FLI – at all other observation times, the predictand is set to category 0. By 
restricting the flaring designation to just the flare rise times, we felt we could maximize the 
association between flaring apparent in the area-average Hα intensity (times when the predictand 
indicates flaring) and the Hα eigenvectors (times when the predictors indicate flaring). 

 
It should be mentioned that, in the maximum Hα intensity and x-ray flux rise identified in the 
pre-determined time segment, we impose a requirement that x-ray flux maximum exceed its 
background value. There are two reasons why we did not require the same for Hα intensity. First, 
we found that in some sequences the Hα intensity from the prior-day sequence of FDMI, used to 
set the current day’s background value, was actually greater than the sequence of the current 
day’s sub-region area-average Hα intensity. Area-average Hα intensity failing to exceed its 
background in such events would mean setting predictands to zero at the Hα rise times, 
eliminating what were indicated as flares in the corresponding Hα eigenvector pattern. As such, 
flare indicators in the predictors would be inconsistent with indication of no flaring in the 
predictands. Second, the peak value of area-averaged Hα intensity should not be used as an 
indicator of flare magnitude because it does not represent the brightening in the specific area of 
flaring. Instead, it is the average Hα over the entire sub-region of the active region, and as such is 
expected have a lesser magnitude than the flare itself. Using it would under-represent the actual 
intensity of the flare. Therefore, the algorithm checked only the peak value of the x-ray flux 
against its background, and the non-zero FLIs were set at the Hα rise times only if it exceeded 
the background value. 
 
The MVDA application algorithm simply ingests the discriminant vectors as generated by the 
development algorithm, and applies them to predictor vectors of leading eigenvector elements 
for any sequence to be diagnosed. Nominally, this should be any sequence not included in the 
training set – that is, the independent cases. However, we also applied the discriminant vectors to  
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Figure 7. Eigenvectors from Examples of FLI (a) 0, (b) 1, (c) 2, and (d) 3 Sequences 

(a) 

(b) 
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Figure 7. (Cont.) 
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the dependent (training set) sequences in order to see if there was a discernable difference in the 
diagnosis skill. After computing the Dg

2 and the pg for each of group (category) g at each 
observation time, the group with the largest pg (or equivalently, the smallest Dg

2) was declared 
the most likely category. In order to compare the diagnosed category with the specified one at 
each time, the same categorization scheme (HMFC or HEFC) that was used to set the 
predictands in the development algorithm is used to specify the category in the application 
algorithm. Thus, the comparison between diagnosed and specified flaring categories at each 
ISOON image time is an evaluation of the MVDA development algorithm’s ability to 
discriminate among the categories given the category assigning method. This discrimination 
ability is key to determining whether or not discriminant analysis is a viable approach to 
diagnosis, and eventually prediction, of solar flare activity based on time series of ISOON Hα 
intensity images. 
 
4. RESULTS 
 
The comparison between diagnosed and specified flaring categories constitute the discussion of 
results in this study. However, to get a preview of how discriminating the MVDA scheme is 
likely to be, we show the results of the discriminant vectors dotted with each of the predictor 
vectors of a selected training set of ISOON cases. Since our two categorization schemes HMFC 
and HEFC have four predictand categories, both have three discriminant vectors. Dotting each 
one with the training set predictor vectors, and plotting the resultant scalar value in a separate 
three-dimensional discriminant space grid for each of the four groups gives an idea of the group-
to-group separation and spread of each group’s discriminant function values. As mentioned 
above, maximizing the separation and minimizing the spread of the points in each group 
optimizes the ability of the multivariate discriminant analysis to provide the most unambiguous 
category diagnosis. 
 
In Figure 8, we show the discriminant space plots for each of the four groups when a training set 
called “Case 1” was used in the MVDA development algorithm along with the HMFC predictand 
categorization approach. The Case 1 training set consisted of eight ISOON Hα image sequences 
made up of two sequences of each of the four flaring level indicator classes of the HEFC 
categorization scheme. We chose to train on the same training set for both the HMFC and HEFC 
schemes in the MVDA algorithm in order to allow a more direct comparison between the 
diagnostic performance of the two approaches. Because the scale of the discriminant space plots 
are significantly different for the HMFC and HEFC schemes, it is difficult to compare them 
qualitatively. 
  
In the Case 1 HMFC plots in Figure 8, most apparent is the sharp drop in the number of 
occurrences of flaring categories (1-3) compared to the non-flaring category (0). That would be 
generally true regardless of what ISOON sequences we selected for the training set. In the 
HMFC scheme, every point in the time series in which the smoothed, area-averaged Hα intensity 
was more than about 3% above its background value and had an x-ray flux level above the x-ray 
threshold was considered flaring (that is, was in category 1-3). That produced a lot more flaring 
occurrences than did the HEFC scheme (discriminant plots not shown) which had flaring 
predictands only during the identified Hα flare rise phase when x-ray flux was above its 
background level. While it is difficult to pinpoint the location of the group mean within each of 
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the four plots (which is just the dot product of each of the discriminant vectors and the group 
mean predictor vector), it is clear from the plots that though each group “centroid” is located in a 
different place in discriminant space, there is not a great deal of distance among them. The 
greatest group-to-group shift in the group mean’s position is in the first discriminant function 
(left to right axis). In the second and third discriminant function dimensions, the points seem 
largely confined to the back fifty units and bottom 100 units respectively. Importantly, the flaring 
groups (1-3) spread into the domain of the non-flaring points (0), which does not bode well for 
the basic distinction between a non-flaring and flaring diagnosis. However, because these are just 
subjective evaluations of the discriminant function values, we should not draw any definitive 
conclusions about the prospects for successful flaring category diagnosis from these plots. The  

 

 
 

 
Figure 8. Discriminant Space Plots from the MVDA/HMFC Development Algorithm: (a) 

Group 0, (b) Group 1, (c) Group 2, and (d) Group 3

(d) 

(a) (b) 

(c) 
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proof of discriminant analysis’ ability to differentiate among prescribed categories lies in the 
application of the discriminant vectors to the independent predictor vectors and the comparison 
of the resulting category diagnoses with the specified category. 
 
To perform this evaluation quantitatively, we computed several statistical metrics to draw out the 
performance characteristics of the flare category diagnoses. Because the categorical method of 
MVDA we are using allows for computing the probability of each of the categories being the 
correct one at each observation time, we can calculate a probability-weighted diagnosed flaring 
category Cp given by 

[2] 
 

at each observation time i, where in our study there are G = 4 groups g = 0, 1, 2, and 3 in the 
HMFC and HEFC predictand schemes. While earlier we mentioned that the group with the 
largest probability pg is objectively the most likely correct category, if the probabilities are 
similar then we are “hedging” our diagnosis in saying that all for categories are nearly equally 
likely. That is generally an undesirable outcome, because we want an unambiguous diagnosis, 
and ultimately prognosis, upon which to stand for decision-making purposes. Therefore, a 
quantitative measure of the uncertainty of the most probable category is the diagnosis uncertainty 
 

[3] 
 

which is the likekihood that the correct category is not the maximum probability category, 
averaged over the total number of observation times evaluated N. Since we evaluate the MVDA 
diagnosis performance separately for each ISOON Hα sequence, N represents the number of 
image times in each sequence. DU is an important metric because it measures decisiveness the 
category diagnosis. The smaller the value of DU for a given image sequence diagnosis, the more 
certain the flaring category diagnoses over the full time series. But though it indicates how sure 
one is of the diagnosed category, it doesn’t convey any information about its correctness. The 
metric that best measures overall skill of the diagnoses for each image sequence evaluated is the 
Brier Score 
 

[4] 
 

where Co is the “observed”, or specified category at each image time i. In the usual computation 
of the Brier Score for binary predictands (e.g., Wilks [6]), G = 2 so the Brier Score is just the 
mean square error of the diagnosed probability of the event occurring (Co = 1) or not occurring 
(Co = 0). However, for G > 2 as in our study, Co can take on more than just the binary values of 0 
and 1, and Cp has the potential for the full range of values from 0 to G-1. The factor (G – 1)2 in 
the denominator ensures that BS remains in the range of 0 to 1. Another metric of interest is the 
bias of the diagnosed flaring categories, given by 
 

[5] 
 

which measures the under- or over-diagnosis of the flaring category, resulting in too many 
missed flares or too many false alarms, respectively. Bias represents the systematic error of 
diagnosis in our study, whereas BS quantifies the random component of the error. As a reference 
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for bias, we also show the fraction of flaring times (FFTs) in each image sequence, so that we 
can tell if there is an association between the bias and the prevalence of flaring activity. 
 
We can also compute the statistics above for all diagnosis times in all sequences, giving an 
overall assessment of the performance of the diagnostic method. This is useful in comparing the 
ability of differing techniques, but is also informative in determining the sensitivity of a given 
scheme to different combination of image sequences used in the training set for the MVDA. A 
metric to measure the ability of a diagnosis scheme to reproduce the frequency distribution of the 
observed predictand categories is the frequency distribution fit (FDF, Norquist [7]) 
 

 
[6] 

 
where mg is the number of image times in which group g is the most likely category (greatest 
diagnosed probability), ng is the number of image times specified (“observed”) to be in group g, 
and N is the total number of image times over all sequences evaluated. A perfectly reproduced 
frequency distribution yields an FDF = 0. While FDF could be computed for each sequence 
separately, the collection of image sequences offers a more robust sample size for the 
determination of the reproduction of the frequency distribution. 
 
4.1 Hα Magnitude Flare Categorization Technique 
 
We show graphically the metrics computed from the Cp values resulting from application of the 
discriminant vectors from the MVDA with the HMFC predictand specification technique 
employed on the training set Case 1 in Figures 9 and 10. In both figures, the date_active region 
ISOON image sequences whose eigenvector predictors and specified predictand categories were 
used in the MVDA development are indicated by an asterisk. We might expect that the 
subsequent application of the derived discriminant vectors might result in more skillful flaring 
category diagnoses for the “dependent” sequences than the independent ones, since they are the 
ones on which they were derived. However, since each sequence is so different in the temporal 
signature of the Hα intensity, it is difficult to discern any noticeable difference in the metrics 
between the dependent and independent sequences. One could only quantify this effect if more 
than one training set were used, in which a particular sequence was used in one set and not in 
another. For now, we focus our attention on the relative magnitudes of the several metrics to 
make sense of the diagnostic scheme’s performance. 
 
In Figure 9, we see that the DU remains in the vicinity of 0.4 – 0.5 for all of the sequences, 
largely independent of the prevalence of flaring (see FFTs in Figure 10). Thus, there is an only 
slightly better than even chance that the most probable category is the correct one in comparison 
to the other three categories for most of the sequences. That is, it is almost equally likely that one 
of the unselected categories is the correct one, even though which one it might be is unknown. 
As mentioned earlier, this is an undesirable outcome since it is important to maximize the 
certainty of the diagnosis to optimize its usefulness. The ambiguity of the diagnosed probabilities 
stems from the inadequacy of the discriminant analysis method’s ability to clearly distinguish 
among the predictand categories. This is reflected in the overlap in discriminant space among the 
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Figure 9. Brier Score and Diagnosis Uncertainty from Application of the MVDA/HMFC 
Development Algorithm 
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Figure 10. Bias from Application of the MVDA/HMFC Development Algorithm, and 
Fraction of Flaring Times
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discriminant functions as plotted in Figure 8, showing the application of the discriminant vectors 
to the training set predictor vectors. 
 
Next, we consider the skill of the probability-weighted category diagnosis as reflected in the BS 
(Figure 9) and bias (Figure 10). For these metrics, there is an apparent association with FFTs in 
the image sequences. Both BS and positive bias are greatest in the least flare-active sequences, 
particularly in those of 20030117. Even in the non-flaring sequences on and after 20030509, 
there is a strong relationship between lack of flare activity and magnitude of positive flare 
category bias. This is generally true of BS as well, though not as pronounced. For example, from 
sequence 20031104_10486c (highly flaring) through 20040316_----- (no flaring), there is a great 
rise in positive bias but only a minor increase in BS. The MVDA with the HMFC method for 
setting predictand category seems to be producing an excessive number of flaring false alarms, 
particularly in inactive sequences. Overall, a minority of image times are specified as flaring 
(19.4%) according to the HMFC method, yet the MVDA/HMFC technique diagnose one of the 
flaring categories (1-3) as most probable in 49.7% of the image times. 
  
Figure 11 depicts the frequency distribution of diagnosed vs. specified flaring categories 
resulting from the HMFC predictand specification method. The chart shows that the diagnostic 
scheme over-represents the number of times of moderate and strong flaring categories by a factor 
of 8 to 10. More than twice as many flaring times are diagnosed as are specified. The FDF for 
this technique is 0.644. This compares with an FDF = 0.214 using the frequency of occurrence of 
no flares (category 0 here) and the same for C5+, M-, and X-class flares (corresponding to the 
current categories 1, 2, 3 respectively) from Tables 1 and 5 respectively of Norquist [7] and 
comparing them with the frequency distribution of specified flaring categories from this study. 
This suggests that the performance of the MVDA/HMFC diagnostic technique is inferior to 
climatology in terms of reproducing the frequency distribution of flaring occurrence. 

 
4.2 Hα Eigenvector Flare Categorization Technique 
 
The alternative method of specifying multiple predictand categories in this study is the Hα 
Eigenvector Flare Categorization technique. We employed the leading eigenvectors as predictor 
vectors for each ISOON sequence used in the training set in the same way that was done for the 
MVDA/HMFC development and application. But for the MVDA/HEFC scheme, we assigned 
the predictand categories at each image time in each sequence according to the character of the 
leading eigenvectors for the corresponding sequence and the peak x-ray flux of the flare. Recall 
also that we set flaring categories (1-3) only during the Hα rise times of the pre-identified flares. 
This, combined with the requirement that peak x-ray flux exceed its background value in 
declaring flaring, resulted in only 3.1% of the image times for all 46 cases specified as flaring 
(categories 1-3) compared to 19.4% for the HMFC predictand specification method. 
 
We used the Case 1 training set of image sequences for the MVDA/HEFC development and 
application so that we could make a direct comparison with the MVDA/HMFC performance. In 
order to determine the sensitivity of the performance of the diagnosis to the training data used, 
we also used two other training sets, called Case 2 and Case 3. All three training sets included 
eight image sequences, and each included the full range of FLI values. Figures 12-14 show the 
performance metrics for all 46 sequences resulting from employing MVDA/HEFC with the three 
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different training sets. In the three figures, the date_active region ISOON image sequences 
whose eigenvector predictors and specified predictand categories were used in the MVDA 
development for each training set are indicated in parentheses by case number. 
 

 
 

Figure 11. Frequency Distribution from Application of the MVDA/HMFC Algorithm 
 
Figure 12 shows the BS for each case and the fraction of specified flaring times in each ISOON 
sequence resulting from the HEFC method. We can directly compare the plot of Case 1 in Figure 
12 with the BS plot in Figure 9. For most (78%) of the image sequences, the BS is considerably 
smaller (better) for the HEFC method than for the HMFC scheme. The overall BS for the 46 
sequences is 27.3% less for HEFC than for HMFC in Case 1. The two curves have a similar 
shape, suggesting that the diagnosis skill relative to the various sequences is alike. However, the 
variation of the fraction of specified flaring times is significantly different between HMFC and 
HEFC, as evidenced by the respective curves in Figures 9 and 12. This difference combined with 
the close association between fractional flaring and BS in the HMFC results suggests that there is 
little fractional flaring – BS association with HEFC. For example, in Figure 12, in the image 
sequences from 20030117_10250 to 20030117_10260, the BS remains large in spite of the 
fractional flaring ranging from 0 to 10% among the sequences. Comparing 20040316 to 
20041007, fractional flaring is constant at zero while BS varies between 0.068 to 0.128.  
 
Bias as shown in Figure 13 even more clearly shows this lesser dependence of flaring diagnosis 
on fractional specified flaring for HEFC. Unlike in Figure 10 (HMFC) where for most of the 
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Figure 12. Brier Score from the MVDA/HEFC Development Algorithm, and Fraction of 

Flare Rise Times 
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Figure 13. Bias from the MVDA/HEFC Development Algorithm 
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Figure 14. Diagnosis Uncertainty from the MVDA/HEFC Development Algorithm
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sequences the bias is inversely related to the flaring activity, in HEFC there are just a few 
sequences (notably 20031029_10486, 20031104_10486c and 20050506_10758) 
in which greater flaring activity is linked to appreciable drops in positive bias. Overall, the 
positive bias is 16.5% less for HEFC than for HMFC. This is all the more remarkable 
considering that there are more than six times as many specified flaring times in the 46 
sequences for HMFC than for HEFC, and the greater the prevalence of observed flaring, the less 
the positive bias for a given diagnostic scheme. 
 
Figure 14 shows the DU values resulting from the MVDA/HEFC development and application 
on Cases 1, 2 and 3. Comparing just the curve for Case 1 with the same from the HMFC scheme 
shown in Figure 9, we see that there are two major differences. First, there is greater degree of 
variation in the HEFC plot. Whereas the HMFC curve is largely confined to values between 0.4 
and 0.5, the HEFC curve is much more irregular, and varies from 0.23 to 0.48. Second, with the 
exception of the performance in the 20030117 sequences, the DU for HEFC is considerably 
smaller than it is for HMFC. As a result, the HEFC Case 1 shows a greater contrast between the 
DU values of the 20030117 sequences and those of the other sequences than do the HMFC DU 
values. Considering all 46 sequences together, the DU using the HEFC method is 24.6% less 
than for the results of the HMFC technique for Case 1. Thus, the HEFC produced flaring 
category diagnoses that were not only more accurate, but also more certain. 

 
For at least for Case 1 training set, the performance of the HEFC technique is superior in all 
three metrics to that of HMFC in the development and application of the MVDA on the ISOON 
image sequences. We now look at the sensitivity of the HEFC method to the choice of training 
data. 
  
Looking back at Figure 12, we can compare the BS computed from the application of the 
MVDA/HEFC technique for all three training sets. A first impression is that the diagnosis skill is 
quite similar among the three cases. All three display most of the same major maxima and 
minima BS values, for example in the 20030117 sequences (maximum BS) and 
20050506_10758 (minimum BS). Overall, there is not a great deal of difference in the flaring 
diagnosis performance stemming from the use of three different training sets in the 
MVDA/HEFC scheme. Table 4 lists the overall assessments (results from all 46 sequences) of 
the metrics for all three training sets from the MVDA/HEFC development and application. The 
biggest difference for BS is between Case 1 and Case 2, where the former is about 8% less than 
the latter. Given that we are using only 46 ISOON sequences, there are a limited number of 
training set combinations that can be tried. With a greater number of sequences, we could get a 
better assessment of the sensitivity of the MVDA/HEFC performance to the training set used. 

 
Table 4. Performance Scores for the MVDA/HEFC Development/Application Process 

 
 BS Bias DU FDF 

Case 1 0.09530 0.24504 0.34075 0.27558 
Case 2 0.10362 0.25688 0.32475 0.24716 
Case 3 0.09821 0.24695 0.30955 0.25973 
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Considering now the bias as shown in Figure 13, we see the same major maxima and minima in 
the positive bias that we saw in the BS for all three cases. From Table 4, we can see that the 
Bias2 (that is, the mean error squared) makes up from 62-64% of the BS (that is, the mean square 
error), showing that the systematic component is greater than the random component (diagnosis 
error standard deviation) in the overall diagnosis error. Again, the greatest bias difference among 
the results from the three cases is between Case 1 and Case 2, where the former is 4.6% less than 
the latter. 

 
We next compare the DU resulting from MVDA development/application using the HEFC 
scheme for the three training sets as shown in Figure 14. As with BS and bias, the overall shape 
of the curves are similar for all three cases. In fact, the same major features of the BS and bias 
curves are present in the DU curves except for the sharp DU increase in the 20021219_10229 
sequence not evident in BS or bias. Whereas BS and bias deal with diagnostic skill and DU 
reflects diagnosis certainty, these results suggest that there are links between them. For example, 
when skill is poor in the 20030117 sequences, uncertainty is also elevated. When skill is good, as 
in the 20031029_10486, 20031104_10486c and 20050506_10758 sequences, diagnosis certainty 
is much greater. Logically, this makes sense since when the probabilities of all four categories 
are similar, there is a better chance of a misdiagnosis of the correct category than when the 
probability of a certain category dominates. Overall, however, Case 1 has the best BS and bias 
but the worst DU, as seen in Table 4. Case 3 DU is about 9% smaller than Case 1, comparable to 
the Case 1-2 difference in BS. It appears that the link between diagnosis skill and certainty 
evident from sequence to sequence is not apparent in the overall statistics. 

 
The last entry in Table 4 is FDF, a measure of how well the diagnosed flaring category (chosen 
as the one with the largest probability at each diagnosis time) frequency distribution fits that of 
the specified flaring categories. We see that for all three cases, when HEFC was employed the fit 
to the specified categories (FDF = 0.276) was much better than for HMFC (FDF = 0.644) on 
Case 1. In fact, the FDF for all three cases are competitive with the fit derived from the flaring 
climatology of Solar Cycle 23 (FDF = 0.214). Figure 15 shows graphically the frequency 
distribution for the three cases and for the specified flaring categories. Considering the counts of 
non-flaring and flaring corresponding to this bar chart, there were 4.8 – 5.4 times more flaring 
times diagnosed than specified. This corresponds to the consistent positive bias seen in Figure 13 
that is less than that from the HMFC scheme in spite of the fact that HMFC specifies over six 
times more flaring times than HEFC. All three cases have their non-zero category maxima in 
Category 2 (moderate flaring). The number of Category 2 flaring diagnoses exceeds those 
specified by more than 10 times for all three training sets. 
 
We complete the analysis of the results by showing some sample flaring diagnoses from the 
MVDA/HEFC development/application scheme for selected image sequences. This demonstrates 
the kind of variability we saw in the probability-weighted flaring category values as compared 
with the specified categories. Figures 16 and 17 show a “good” and a “bad” example of flaring 
diagnosis from the HEFC method operating on the Case 3 training set. In Figure 16(a), we show 
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Figure 15. Frequency Distribution from Application of the MVDA/HEFC Algorithm 

 
the result of the Case 3-based diagnosis for the 20031029_10486 image sequence. For this 
sequence, the diagnosis captures the occurrence of the category 3 flare (given the x-ray 
background value indicated, this would be an X-class flare) quite well, achieving a probability-
weighted flaring category of about 2.5. A note about the flare duration – recall that in the HEFC 
scheme flaring is only specified during flare rise, so the solid curve does not represent the full 
duration of actual flaring. The diagnosed flaring has to transition from non-flaring to severe 
flaring and back to non-flaring, so the diagnosis appears to infer a time span of flaring. Since 
specification does not represent duration, neither should diagnosis be expected to do so. The 
diagnosis could at most signal flare magnitude and time of flare rise. Figure 16(b) shows the 
probability of all four categories for this sequence. It is encouraging to see that the probability of 
category 0 (non-flaring) is large for most of the specified non-flaring times. This means that the 
diagnosed uncertainty during these times was small, making the analyst more certain that flares 
would not be occurring before and after the large flare actually occurred. 
 
The “bad” diagnosis example is shown in Figure 17. Figure 17(a) shows the probability-
weighted diagnosed flaring categories vs. the specified categories for the 20030318_10318 
sequence. The diagnoses produce probability-weighted diagnosed flaring of category 1 at 17, 20 
and 21 UTC, and then nearly category 2 at the end of the sequence. Yet the specification shows 
no sign of any flaring in the entire duration of the sequence. The plot of the four category  
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Figure 16. 20031029_10486 Image Sequence (a) Cp (Dashed) and Co (Solid) and (b) pg from 
Application of the MVDA/HEFC Algorithm on Case 3 

(a) 

(b) 

Approved for public release; distribution is unlimited.

c 
0 

"' 2 
8 
"' c 
·;: 
0 
ii: 

Case 3ha: Predicted v. Observed Flare Category 20031 029_1 0486 
3

.
5 1 1

"P b b'.!t, · 
1
'ht d P 

1
d' t d 1FI Cat!egory 

1 1 

ro o 111 y-we19 e re 1c e ore 
Observed Flare Category 

3.0 _ X-ray Background Flux = 3.25600e-06 .-- _ 

2.5- -

2.0- -

1.5-

1.0-

-0.5wu~~~lwu~~~wu~~~~~~~wuwl~~wl~~wlww~~wulwu~LWiwu~ 

14 15 16 17 18 19 20 21 22 23 24 
Hour (UTC) 

Case 3ho: Predicted Flare Category Probobilities 20031 029_1 0486 
1.1 

0.1 

-0.1~~~~~~~~~~~~~~~~wu~~~~~~wu~ 

14 15 16 17 18 19 20 21 22 23 24 
Hour (UTC) 



31 
 

 
 

 
 

Figure 17. Same as in Figure 16 Except for the 20030318_10318 Image Sequence 
 
 

(a) 

(b) 
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probabilities (Figure 17(b)) shows that category 0 has the greatest probability through 22 UTC. 
However, it dips below 0.5 at the times of the probability-weighted diagnosis of category 1. This 
suggests a lack of diagnosis certainty that could hamper any decision-making that depends on 
such guidance. But the clear deficiency in the diagnosis occurs after 22 UTC, when the category 
2 probability becomes dominant in place of category 0. In the last hour of the sequence, category 
2 probability exceeds 0.9. Here is an example of the diagnostic scheme being apparently 
“sincerely wrong.” How might this happen? To see if there is any presumptive justification for 
such a diagnosis, we look at the area-average Hα/Hα(bkgd) plot and the leading eigenvectors 
plot for this sequence as shown in Figure 18. Figure 18(a) shows no distinct rise associated with 
flaring at any time after Hα/Hα(bkgd) > 1, including after 22 UTC. Figure 18(b) depicts the 
smooth sinusoidal characteristics of non-flaring (compare with Figure 7(a)) in the leading 
eigenvectors at all times after 16 UTC. These two pieces of evidence, specific to the sub-region 
of active region 10318 from which the ISOON Hα images were drawn, suggest that if there were 
flares occurring during the analysis time period of this sequence they were not originating from 
this sub-region. Now examining the x-ray flux for 20030318 in Figure 19, we see indications of 
weak (C-class) flaring at several times during the sequence period. The x-ray background flux 
for this date is 3.06 × 10-7 W m-2, and the x-ray flares apparent in Figure 19 do exceed this level, 
so they can legitimately be declared C-class flares. However, the convention of the HEFC 
technique in assigning flaring predictand categories requires that clear evidence of flare rises 
exist in the area-average Hα and the xray-flux time series, and that the eigenvectors show the 
characteristics of the FLI=1-3 for each such flare. Since neither area-average Hα nor the 
eigenvectors show any such evidence, we must conclude that the C-class flares apparent in the x-
ray flux time series originated from elsewhere on the solar disk. Therefore, the rise of category 2 
probability resulted from discriminant vectors placing diagnosed points in discriminant space 
closer to the category 2 group mean and away from the category 0 group mean. What it is about 
the leading eigenvector elements (the predictors) that would cause this drift is unknown. Such 
errant behavior in the performance of flaring diagnosis in the MVDA algorithm is a subject for 
future investigation. 

 
5. SUMMARY AND CONCLUSIONS 
  
In this study, we explore the potential of ISOON Hα imagery sequences in diagnosing the 
presence of flaring in selected solar active regions. The objective of this investigation was to 
determine if there is sufficient information in the characteristics of the Hα image pixels of a sub-
region of interest to detect flaring observed in optical and x-ray observations. While ultimately 
the goal is to be able to anticipate flaring at least several hours before the event, we know that 
there is no point in attempting prognosis if diagnosis is not attainable. 
 
We used ISOON Hα image sequences at one-minute intervals for 46 multi-hour observations of 
targeted sub-regions of selected solar active regions. Also used were the whole solar disk 
measurements of x-ray flux as an additional indicator of solar flares. Taking the image times 
rather than the individual pixel values as the “variables”, we performed a principal component 
analysis of each the 46 image sequences, producing eigenvalues corresponding to  eigenvector  

Approved for public release; distribution is unlimited.



33 
 

 
 

 
 

Figure 18. 20030117_10258 Image Sequence (a) Hα/Hα(bg) and (b) First Nine Eigenvectors 
 

(a) 

(b) 
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Figure 19. 20030318 Image Sequence GOES One-Minute Average 1-8 Å X-Ray Flux 
 
elements at each image time. Using the eigenvalues to determine the cumulative explained 
variance of the eigenvector elements, we truncated the number of eigenvector elements well 
short of the full set while still ensuring that 99.9% of the variance was retained. The eigenvector 
elements were then used as the predictor variables at each image time in discriminant analysis  
with accompanying binary (non-flaring/flaring) and later multiple (non-flaring and levels of 
flaring intensity) categorical predictands. After using training sets of predictor 
vectors/predictands from all available image times of selected image sequences to develop 
discriminant vectors, we then applied the discriminant vectors to both dependent (the training 
sets) and independent predictor vectors. This resulted in probabilities of each binary or multiple 
predictand category being the correct one, which were compared with the specified (“observed”) 
category at each image time. Several metrics were deduced from the comparisons as measures of 
the performance of the diagnostic technique. 
 
We first tried a binary no-flare/flare approach to setting the predictand. We used a simple 
algorithm in which we set the category to 1 (for flaring) for every image time during a 5% or 
greater rise in the area-average Hα and for subsequent times as long as Hα exceeded the pre-rise 
base value. The x-ray flux also had to be ≥ 1 × 10-6 Wm-2 at all designated flaring times. At all 
other times, the category was set to 0 (non-flaring). When these predictands were used with the 
predictor vectors in developing the discriminant vector (singular since there were only two 
categories), which was then applied to the same image sequences used in development, we found 
that an excessive number of flaring times were diagnosed. In investigating the cause, we found 
that in at least one sequence in the training set, there was clear indication of flaring in the 
eigenvectors used as predictors as well as the x-ray flux. But because there were no rises of the 
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area-averaged Hα of at least five percent above a base value, the predictand was set at non-
flaring for the entire sequence. We believe this conflict between the predictors and predictands 
obscured the distinction between flaring and non-flaring categories in the development of the 
discriminant vector, causing the discrimination between the two groups to be compromised. We 
concluded that using an arbitrary threshold in area-averaged Hα to define what constitutes flaring 
when there are separate indications of non-flaring/flaring present in the associated eigenvectors 
can lead to such conflicts in the information supplied to the discriminant analysis. 
 
Our second method to define flaring category predictands sought to ensure consistency between 
trends in the predictors and predictands. To do this, we attempted to consider the degree, or 
relative magnitude of the Hα rise and to represent this in multiple flaring categories. We defined 
corresponding Hα categories so that when each was diagnosed it could be easily mapped to a 
standard x-ray flare class. To do this, we first computed “background” values of Hα intensity and 
x-ray flux for each image sequence, based on the previous day’s observations (when available) 
and using the NOAA/SWPC “X-ray Bkgd Flux” algorithm. We then computed the correlation of 
five-point smoothed one-minute area-averaged Hα intensity and the reported one-minute interval 
x-ray flux when each is divided by its respective background (bkgd) value. For the seven image 
sequences with the highest correlations (all > 0.7), we computed five-minute averages of both 
area-averaged Hα intensity and x-ray flux, dividing Hα averages by Hα(bkgd) and x-ray 
averages by their threshold (thrs, full power of 10 greater than the background flux). The best fit 
linear relationship of the form [Hα]/Hα(bkgd)=A + B log {[Xr]/Xr(thrs)} was then determined 
from the five-minute average [Hα]/Hα(bkgd), [Xr]/Xr(thrs) values. Next, we established four 
flare categories in terms of Xr/Xr(thrs): Category 0, non-flaring, Xr/Xr(thrs) < 1; Category 1, 
weak flaring, 1 ≤  Xr/Xr(thrs) < 10; Category 2, moderate flaring, 10 ≤ Xr/Xr(thrs) < 100; 
Category 3, strong flaring, Xr/Xr(thrs) ≥ 100. Using the best fit relationship, we computed the 
boundary values of the four categories in terms of [Hα]/Hα(bkgd). Thus, the category assigned at 
each image time of the area-averaged Hα depends on its ratio to the background Hα for that 
sequence. In this predictand category assignment algorithm, which we called the Hα Magnitude 
Flare Categorization (HMFC) method, only area-averaged Hα (and not x-ray flux) was used to 
set the predictand category at each image time. 

 
Once the multivariate discriminant analysis was conducted on the predictor vectors and 
associated assigned predictands from a training set of eight image sequences, the resulting 
discriminant vectors were applied to all 46 image sequences. The dot product of each predictor 
vector with the three discriminant vectors results in a projection in the three dimensions of 
discriminant space. The point’s location with respect to the four group means projections of the 
predictor vectors used in development indicate the likelihood that it falls into each of the 
respective categories. After computing the category probabilities for each application image 
time, we derived the probability-weighted diagnosed flaring category. We calculated several 
performance metrics by comparing this with the specified (by the HMFC scheme), or “observed” 
category. Using the HMFC technique in the MVDA, we found that the most probable category 
was only slightly more likely to be the correct one than not. There was considerable overlap 
among the development discriminant functions in discriminate space, indicating that clear 
distinction was lacking. We found a substantial positive bias in the probability-weighted 
diagnosed flaring categories, which was greater for non-flaring than for flaring sequences. This 
was also true to a lesser extent than for Brier Score (mean square error). Over all sequences, 
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categories diagnosed as indicating flare occurrence exceeded specified flare event categories by 
almost a factor of three, indicating an excessive number of false alarms. The number of 
diagnosed moderate and strong flaring image times was 8 – 10 times the number specified. The 
fit of the frequency distribution of the most probable flaring category to the frequency 
distribution of the specified categories was not nearly as good as for the flaring climatology of 
Solar Cycle 23. 
 
We tried another predictand assignment algorithm, called Hα Eigenvector Flare Categorization 
(HEFC), in an attempt to improve the performance of the MVDA on the ISOON image 
sequences. A comparison of the leading Hα eigenvectors and the x-ray flux time series for the 46 
sequences showed similar eigenvector patterns for the sequences that had like x-ray flare 
characteristics. On the basis of these flare intensity groups, we assigned each Hα flare in each 
image sequence to one of the four flaring categories of non-flaring, and weak, moderate and 
strong flaring that corresponded to the associated eigenvector pattern/x-ray flare group. After 
experimenting with several ways of including the image times of the Hα flare in the flaring 
category assignment, we settled on only the rise times as receiving a non-zero flaring category 
designation. This was done to make the strongest association possible between the predictand 
flaring indicators and the flaring inflections in the leading eigenvector patterns used as the 
predictor vectors. However, only when the x-ray flux, and not the area-averaged Hα intensity, 
rose above its respective background level was the non-zero flaring assignment made. 

 
Subsequent MVDA development and application of discriminant vectors using the HEFC 
technique showed considerable improvement in flaring category diagnosis over the HMFC 
method when both were compared with categories specified according to their respective 
algorithms. Using the same training set of image sequences and evaluating the metrics over all 
46 image sequences, we found that the Brier Score was about 27% less (better) for HEFC than 
for HMFC and was less associated with flaring prevalence in a given sequence. Even though 
there were many fewer (less than 1/6th) specified flaring times in the HEFC than in the HMFC, 
the HEFC had a 17% smaller positive bias overall than did HMFC. The diagnosed uncertainty 
from HEFC was about 25% less than from HMFC, indicating that the HEFC method produces 
more skillful and more certain diagnoses of flaring category. 

 
Given that the performance of HEFC in MVDA was better than that of HMFC, at least for the 
single training set used, we next assessed the sensitivity of MVDA/HEFC to the choice of 
training set. Using three training sets of eight image sequences each (with some overlap among 
the sets), we found similar sequence-to-sequence trends in the assessment of the diagnosis 
performance. The best of the three cases was 8% better in Brier Score and 5% in bias than the 
worst. We found that the systematic component of the diagnosis error was greater than the 
random component, comprising 62 – 64% of the total among the three cases. There was a clear 
link between greater diagnosis certainty and better skill among the results for three cases. Image 
sequences that had less positive bias and smaller Brier Score also had a reduced diagnosed 
uncertainty. This seems logical in light of the fact that diagnoses of similar probability among the 
four categories are more likely to result in an incorrect category choice than are diagnoses where 
one category has a predominant probability. Diagnosis certainty was 9% greater for the best case 
than for the worst case. Finally, unlike the single HMFC case, the frequency distribution fit of 
the diagnosed categories to the frequency distribution of specified categories in the three HEFC 
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cases were competitive with the fit for the Solar Cycle 23 climatological flaring category 
frequency distribution. Despite its better frequency distribution fit than the HMFC method, 
HEFC still diagnosed about five times more occurrences of flaring than were specified. The 
over-diagnosis factor exceeded the 2 – 3 factor of HMFC due to the fact that HEFC specified 
16% of the number of flaring times than did HMFC. 
 
From the best of the three cases when the MVDA/HEFC technique was employed, we examined 
plots of sequences of both “good” and “bad” diagnosis performance. In the sequence that showed 
desirable skill, we noted that the certainty of the non-flaring diagnosis was large both before and 
after the flare diagnosis, which was correct in both magnitude and timing. Thus there was clear 
distinction between times of non-flaring and flaring in this sequence. In the “bad” performance 
sequence, incidences of moderate flaring were diagnosed with great certainty, whereas no flaring 
was specified in the sequence. Upon investigation, there was no evidence in the Hα intensity, 
either the area-area average or the eigenvectors, of flaring of any kind from the active region 
sub-region from which the ISOON images were taken. The cause of the erroneous diagnosis of 
flaring at the end of the sequence period is unknown, and is a subject for further investigation. 
  
We conclude from these results that the MVDA/HEFC technique, with possible further 
modifications, may have the potential to perform flaring diagnoses of appreciable skill and 
certainty based on adequate training sets of Hα image sequences and coincident x-ray flux time 
series. There are two future directions that we desire to take in this work. The first is to increase 
the number of Hα image sequences and x-ray time series available for development and 
application. These should include approximately equal number of sequences that are non-flaring 
and flaring. Increasing the development and application sample should allow us to more 
definitively determine the sensitivity of the diagnosis procedure to the choice of image sequences 
in the training set. The second is to consider additional types of observations of solar conditions 
known to be associated with flaring, notably the magnetic fields of the photosphere. For 
example, fast cadence and highly resolved magnetograms could complement the optical data 
used to develop the predictor set. Ultimately, we wish to determine if such quick cadence 
observations can be used in conjunction with MVDA to anticipate the occurrence of flaring with 
suitable skill and confidence. We hope to conduct such an investigation in the future. 
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APPENDIX A 
 
LINEAR DISCRIMINATION AND CLASSIFICATION OF SAMPLE DATA 
IN TWO GROUPS (SUMMARIZED FROM SECTIONS 13.1 AND 13.2.1 OF 
WILKS [6]) 

 
A1. Discrimination and Classification 

 
Consider a K-dimensional vector x of observations of two or more variables sampled from a 
larger population of measurements that belong to two or more groups that are distinct from each 
other in some identifiable manner. The groups might represent distinguishable geographical 
regions, months of year, climatological realms, etc. What is known about the sample in advance 
are: (1) the number G of distinct groups, (2) each measurement vector x belongs to one and only 
one group, (3) that all measurement vectors belong to one group, none are excluded, (4) a set of 
training data is available, a subset of the sample of observations, in which the group membership 
of each of the data vectors xi, i=1,…,n is known. 
 
Discrimination is the process of determining functional forms of the training data that best 
distinguish the features of the groups from each other. Classification is the act of applying these 
functional forms to an independent subset of the sample of observations yj, j=1,…,m in order to 
assign them to their respective groups. The probability pg(yj), g=1,…,G that each observation 
vector yj belongs to each group g can then be determined. 
 
If the groups to which the current measurements yj are to be assigned refer to future event 
categories, classification is used as a means of assigning each measurement vector to a category 
that is predicted to occur. In this case discrimination and classification can be used as a 
forecasting tool, and the probabilities pg(yj) of future occurrence of the G event categories can be 
estimated. 
 
A2. Linear Discrimination for G = 2 
  
Suppose we wish to develop the functional form that will distinguish between two groups based 
on an available set of n K-dimensional vectors of observations x for which the group 
membership of each observation vector is known. The K dimensions of the vectors may be, for 
example, different variables (e.g., wind speed, temperature, etc.), while n might be, for example, 
the number of samples in a time series of observations of those variables. The elements of each 
vector xi are xi,1, xi,2, …, xi,K, which are the observed values of the variables for the ith 
observation. 
 
Let n1 be the number of observations in group g=1 and n2 the number in group g=2. Then there 
are two sets of training vectors xg: x1

i, i=1, …, n1, and x2
i, i=1, …, n2. The goal of linear 

discrimination is to determine the vector of coefficients a of the linear combination of K 
elements aT

x, the discriminant function, that optimizes the classification of independent K-
dimensional observation vectors yj into either g=1 or g=2. R. A. Fisher devised an approach to 
this problem by determining the vector of coefficients a that is directed in K-dimensional space 
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so as to maximize the separation of the means of the observations when the observation vectors x 
are projected onto a. He showed that this criterion is equivalent to finding a to maximize the 
expression 
 

    ̅     ̅   

  [     ] 
 .      [A-1] 

 
The two mean vectors  ̅  and  ̅  are calculated separately for each group, as the vector of means 
of the observations of each element (variable): 
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  ; g=1,2.     [A-2] 

 
The common sample covariance matrix for the entire sample of training data (i.e., over both 
groups) is [Spool], which is given by 
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[  ]  

    

       
[  ],    [A-3] 

 
the weighted average of the two sample covariance matrices of the respective groups, the 
elements of which are 
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 ; k ,l = 1,…,K.   [A-4] 

 
Note that the  ̅ 

 
  ̅ 

  are the means of the observations of each of the combinations of variables k, 
l. The sample covariance matrices of the respective groups are then 
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.     [A-5] 

 
Note that since     

 
     

  , [Sg] will be a symmetric matrix. Thus, calculating below and to the 
diagonal gives the corresponding elements above the diagonal. 
 
All that is assumed in the formulation to this point is that the covariance matrices of the 
populations of the two groups from which the sample of training data were drawn are equal. 
Maximizing the first expression leads to the vector a of the coefficients in Fisher’s linear 
discriminant function, represented by       . Application of this function to independent 
observations y of the same K-dimensional parameters results in two groups of scalar values with 
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different means and equal variances distributed along the a axis. The vector a locating the 
direction of maximum separation between the two groups is given by 
 

  [     ]
  

  ̅   ̅  .     [A-6] 
 

Then Fisher’s linear discriminant function is 
 

       [[     ]
  

  ̅   ̅  ]
 

    ̅   ̅   [     ]
  

 .  [A-7] 
 

Applying a to the difference between the two groups’ means maximizes the distance between 
their projections on a, which is the Mahalanobis distance D2 between the groups: 
 

       ̅   ̅     ̅   ̅   [     ]
  

  ̅   ̅  .   [A-8] 
 

A3. Classification using Fisher’s Linear Discriminant Function 
  
Fisher’s linear discriminant function can be used to classify any number M of independent 
observations y of the same K-dimensional parameters as in the training vectors x: 
 

            ; i = 1, …, M.     [A-9] 
 
This scalar quantity, the dot product of    and the independent observation vectors, is the 
projection of the vectors onto the direction of maximum separation, and represents a new 
variable. The observation vector is assigned to g=1 if        is closer to the projection of the 
Group 1 mean onto the direction a, or to Group 2 if it’s closer to the Group 2 mean projection. 
The way this is determined is by computing the midpoint between the means of the two groups, 
which is the projection of the average of the two mean training vectors onto a:  
 

 ̂  
 

 
    ̅     ̅   

 

 
    ̅   ̅  .    [A-10] 

 
The independent observation vector yi is assigned to one of the two groups as follows: 

Yi  assigned to Group 1 if         ̂, 
Yi  assigned to Group 2 if         ̂. 

 
A probability of the observation lying within Group 1 can be estimated by: 
 

         
   ̅        

       [A-11] 
 

so that for           ̅           which can be set to 1 (100% probability of being in 
Group 1). For           ̅           which can be set to zero (0% probability of being in 
Group 1, or 100% probability of being in Group 2).  
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APPENDIX B 
 
FISHER’S LINEAR DISCRIMINANT FOR MULTIPLE GROUPS (SUMMARIZED 
FROM SECTION 13.3.1 OF WILKS [6]) 

 
- This generalization of Fisher’s Linear Discriminant for two groups is called “multiple 
discriminant analysis.” 
- Problem: allocate n K-dimensional data vectors x to one of G > 2 groups. 
- Basis vectors for group discrimination are called discriminant vectors, of which there are J = 
min(G-1, K), denoted aj, j=1,…, J, which are K-dimensional. 
- The projection of the data onto these vectors gives J discriminant functions 
 

     
   ; j=1,…, J.      [B-1] 

 
- The discriminant vectors are determined from G data matrices of the training data, each 
dimensioned ng × K: 
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 ; g=1,…, G.     [B-2] 

 
- The rows of the data matrices are the training set of observation vectors x, each of which is 
classified by group g according to a categorical assignment that ensures sufficient distinction or 
separation among the groups. ng is the number of observation vectors assigned to group g. 
- A K × K sample covariance matrix is computed from each data group: 
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 ; g=1,…, G    [B-3] 

 
In which the matrix elements are the covariances of the observation vectors for each group: 
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; k ,l = 1,…,K.   [B-4] 

 
Note that the group mean vectors are given by 
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 ; g=1,…,G     [B-5] 
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and that the  ̅ 
 
  ̅ 

  are the elements of the group mean vectors that are the means of the 
observations of each of the combinations of variables k, l. 
- The weighted average of the G sample covariance matrices gives a pooled estimate of the 
common covariance matrix: 
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      [  ],    [B-6] 
 

a K × K matrix, also called the within-group covariance matrix, where 
 

  ∑   
 
   .      [B-7] 

 
- The between-groups covariance matrix is also required for computation of the multiple 
discriminant functions: 
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where 
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         [B-9] 

 
is the grand mean, or overall vector mean of all of the n observation vectors. The between groups 
covariance matrix can also be expressed as 
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     [B-10] 

 
- The J=min(G-1,K) K-dimensional discriminant vectors aj, j=1,…, J are derived from the first J 
eigenvectors (corresponding to the non-zero eigenvalues) of the K × K matrix 
 

[Spool]-1[SB].        [B-11] 
 

- The aj are the scaled (to unit magnitude) eigenvectors ej. However, if the eigenvectors are not 
of unit magnitude, the discriminant vectors aj can be computed from the eigenvectors using the 
relation 

   
  

   
 [     ]   

    .     [B-12] 

 
-The first discriminant vector a1, associated with the largest eigenvalue, makes the largest 
contribution to separating the group means. Conversely, the Jth eigenvector aJ, is associated with 
the smallest of the first J eigenvalues, and makes the smallest contribution. 
- Once the discriminant vectors aj are derived from the training set, they can be used to assign 
independent observation vectors xo one of the G groups. This is done by determining the group 
whose group mean is closest to the observation in discriminant space. To do this, compute the 
squared distances between the observation vector and each of the group means in discriminant 
space: 
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        ̅  ] ; g=1,…, G   [B-13] 
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  ; g=1,…, G.   [B-14] 

 
Then assign the observation vector xo to the group with the smallest value of D2, that is, to the 
group with the closest group mean. 
(This ends the discussion of the multiple discriminant analysis algorithm of Section 13.3.1 in 
Wilks [6]). 
- An estimate of the probability that each group g is the correct group to which to assign the 
observation vector can be derived as follows. First, compute the fraction of each group’s squared 
distance to the sum of the squared distances of all groups: 
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 .      [B-15] 

 
The probabilities for the G groups must sum to one: 
 

∑      
   .      [B-16] 
 

We seek a probability of group membership pg that is inversely proportional to the fractional 
distance of the observation from the respective group mean: 
 

   
 

  
       [B-17] 

 
where C is an arbitrary constant. Using the bth group mean (that is, the group mean with the 
smallest fg) as the basis, we can relate the other group probabilities to the basis group probability 
pb by 
 

                [B-18] 
 

for all l=1,…,b-1, b+1,…,G groups. Inserting all pl from these relationships into the summation 
of probabilities to one gives 
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or, solving for pb, 
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.    [B-20] 
 

Then the other group probabilities can be obtained from their relationships to the basis group 
probability. For example, for G = 4 and f1 = 0.1, f2 = 0.2, f3 = 0.3, and f4 = 0.4 (note that the 

Approved for public release; distribution is unlimited.



45 
 

fractional distances always sum to one) so that b = 1, we get p1 = 0.48, p2 = 0.24, p3 = 0.16, and 
p4 = 0.12, which sum to one as required. 
 
  

Approved for public release; distribution is unlimited.



46 
 

DDIISSTTRRIIBBUUTTIIOONN  LLIISSTT  
  

  
DDTTIICC//OOCCPP  
88772255  JJoohhnn  JJ..  KKiinnggmmaann  RRdd,,  SSuuiittee  00994444    
FFtt  BBeellvvooiirr,,  VVAA  2222006600--66221188        11  ccyy  
  
AAFFRRLL//RRVVIILL  
KKiirrttllaanndd  AAFFBB,,  NNMM  8877111177--55777766      22  ccyyss  
  
OOffffiicciiaall  RReeccoorrdd  CCooppyy  
AAFFRRLL//RRVVBBXXSS//DDoonnaalldd  NNoorrqquuiisstt      11  ccyy  
 

Approved for public release; distribution is unlimited.




